

MECHANICAL DATA

Dimensions in mm (inches)

$\frac{0.51 \pm 0.10}{(0.02 \pm 0.004)}$ 0.31 (0.012) rad. 2.54 ± 0.13 (0.10 ± 0.005) 1.91 ± 0.10 (0.075 ± 0.004) Α 0.31 (0.012) 3.05 ± 0.13 (0.12 ± 0.005) 1.40 (0.055) 1.02 ± 0.10 max. (0.04 ± 0.004)

PNP SILICON TRANSISTOR IN A HERMETICALLY SEALED CERAMIC SURFACE MOUNT PACKAGE FOR HIGH RELIABILITY APPLICATIONS

FEATURES

- High Voltage Switching
- Low Power Amplifier Applications
- Hermetic Ceramic Surface Mount **Package**

LCC₁

Underside View

PAD 1 - Base PAD 2 - Emitter PAD 3 - Collector

APPLICATIONS:

- CECC Screening Options
- Space Quality Levels Options.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V_{CEO}	Collector – Emitter Voltage	-175V
V_{CBO}	Collector – Base Voltage	-175V
V_{EBO}	Emmiter – Base Voltage	-5V
I _C	Collector Current	-1A
P_{D}	Total Device Dissipation @ T _A = 25°C	500mW
T_J , T_STG	Operating and Storage Junction Temperature Range	−65 to +200°C

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit	
	OFF CHARACTERISTICS	•	•					
BV _{CEO}	Collector–Emitter Breakdown Voltage ¹	$I_C = -10mA$	I _B = 0	-175				
BV _{CBO}	Collector – Base Breakdown Voltage	$I_C = -100 \mu A$	I _E = 0	-175			V	
BV _{EBO}	Emitter – Base Breakdown Voltage	$I_C = 0$	$I_{E} = -10 \mu A$	-5.0			1	
I _{EBO}	Emitter Cut-off Current	$V_{BE} = -3.0V$	I _C = 0			-50	nA	
I _{CBO}	Collector Cut-off Current	V _{CB} = -100V	I _E = 0			-100		
	ON CHARACTERISTICS							
h _{FE}	DC Current Gain	$I_{C} = -0.1 \text{mA}$	V _{CE} = -10V	80				
		$I_{C} = -1.0 \text{mA}$	V _{CE} = -10V	90				
		$I_C = -10mA$	V _{CE} = -10V	100				
		$I_C = -50 \text{mA}$	V _{CE} = -10V	100		300		
		I _C = -150mA	V _{CE} = -10V	50				
V _{CE(sat)}	Collector – Emitter Saturation Voltage ¹	$I_C = -10mA$	I _B = -1.0mA			-0.3	V	
		$I_C = -50 \text{mA}$	I _B = -5mA			-0.5		
V _{BE(sat)}	Base – Emitter Saturation Voltage	$I_C = -10mA$	I _B = -1.0mA			-0.8	V	
		$I_C = -50 \text{mA}$	I _B = -5mA	-0.65		-0.9		
	SMALL SIGNAL CHARACTERIST	CS	•					
f _t	Current Gain Bandwidth Product	$V_{CE} = -30V$ I_{C}	I _C = -30mA	100			MHz	
			f = 100MHz				IVITZ	
C _{ob}	Output Capacitance	V _{CB} = -20V	I _E = 0			10	pF	
			f = 100kHz			10		
C _{ib}	Input Capacitance	V _{BE} = 1.0V	I _C = 0			75	pF	
			f = 100kHz					
h _{ie}	Input Impedance			200		1200	Ω	
h _{re}	Voltage Feedback Ratio	$V_{CE} = -10V$	I _C = -10mA			3.0	x10 ⁻⁴	
h _{fe}	Small Signal Current Gain		f = 1.0kHz		80	320		
h _{oe}	Output Admittance					200	μmhos	
NF		V _{CE} = -10V	$I_C = -0.5 \text{mA}$			3.0	dB	
		$R_S = 1.0\Omega$	f = 1.0kHz			3.0	l ub	
	SWITCHING CHARACTERISTICS							
t _{on}	Turn-On Time	V _{CC} = -100V	$V_{BE} = 4.0V$			400		
t _{off}	Turn-Off Time	$I_C = -50 \text{mA}$	I _{B1} = I _{B2} =-5mA			600	ns	

¹⁾ Pulse test : Pulse Width $< 300 \mu s$,Duty Cycle < 2%

E-mail: sales@semelab.co.uk

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk